10,037 research outputs found

    Convergence of derivative expansions of the renormalization group

    Get PDF
    We investigate the convergence of the derivative expansion of the exact renormalization group, by using it to compute the beta function of scalar field theory. We show that the derivative expansion of the Polchinski flow equation converges at one loop for certain fast falling smooth cutoffs. The derivative expansion of the Legendre flow equation trivially converges at one loop, but also at two loops: slowly with sharp cutoff (as a momentum-scale expansion), and rapidly in the case of a smooth exponential cutoff. Finally, we show that the two loop contributions to certain higher derivative operators (not involved in beta) have divergent momentum-scale expansions for sharp cutoff, but the smooth exponential cutoff gives convergent derivative expansions for all such operators with any number of derivatives.Comment: Latex inc axodraw. 20 page

    Large negotiable certificates of deposit

    Get PDF
    Certificates of deposit ; Money market

    Turbulence and modeling in transonic flow

    Get PDF
    A review is made of the performance of a variety of turbulence models in the evaluation of a particular well documented transonic flow. This is done to supplement a previous attempt to calibrate and verify transonic airfoil codes by including many more turbulence models than used in the earlier work and applying the calculations to an experiment that did not suffer from uncertainties in angle of attack and was free of wind tunnel interference. It is found from this work, as well as in the earlier study, that the Johnson-King turbulence model is superior for transonic flows over simple aerodynamic surfaces, including moderate separation. It is also shown that some field equation models with wall function boundary conditions can be competitive with it

    Broughton Archipelago Clam Terrace Survey : final report

    Get PDF
    During a 1995 aerial video survey of the coastline of Johnstone Strait, an unusual shoreline feature was noted and termed “clam terraces” (inset) because of the terrace-type morphology and the apparent association with high clam productivity on the sandflats. Typical alongshore lengths of the terrace ridges are 20-50m, and across-shore widths are typically 20-40m. An area with an especially high density of clam terraces was noted in the Broughton Archipelago, between Broughton and Gilford Islands of southeastern Queen Charlotte Strait. Clam terraces in this area were inventoried from the aerial video imagery to quantify their distribution. The terraces accounted for over 14 km of shoreline and 365 clam terraces were documented. A three-day field survey by a coastal geomorphologist, archeologist and marine biologist was conducted to document the features and determine their origin. Nine clam terraces were surveyed. The field observations confirmed that: the ridges are comprised of boulder/cobblesized material, ridge crests are typically in the range of 1-1.5m above chart datum, sandflats are comprised almost entirely of shell fragments (barnacles and clams) and sandflats have very high shellfish production. There are an abundance of shell middens in the area (over 175) suggesting that the shellfish associated with the terraces were an important food source of aboriginal peoples. The origin of the ridges is unknown; they appear to be a relict feature in that they are not actively being modified by present-day processes. The ridges may be a relict sea-ice feature, although the mechanics of ridge formation is uncertain. Sand accumulates behind the ridge because the supply rate of the shell fragments exceeds the dispersal rate in these low energy environments. The high density areas of clam terraces correspond to high density areas of shell middens, and it is probable that the clam terraces were subjected to some degree of modification by aboriginal shellfish gatherers over the thousands of years of occupation in the region. (Document contains 39 pages

    Chameleon effect and the Pioneer anomaly

    Full text link
    The possibility that the apparent anomalous acceleration of the Pioneer 10 and 11 spacecraft may be due, at least in part, to a chameleon field effect is examined. A small spacecraft, with no thin shell, can have a more pronounced anomalous acceleration than a large compact body, such as a planet, having a thin shell. The chameleon effect seems to present a natural way to explain the differences seen in deviations from pure Newtonian gravity for a spacecraft and for a planet, and appears to be compatible with the basic features of the Pioneer anomaly, including the appearance of a jerk term. However, estimates of the size of the chameleon effect indicate that its contribution to the anomalous acceleration is negligible. We conclude that any inverse-square component in the anomalous acceleration is more likely caused by an unmodelled reaction force from solar-radiation pressure, rather than a chameleon field effect.Comment: 16 pages; to appear in Phys.Rev.

    President\u27s Page

    Get PDF

    A study of free association based on Collier's theory of consciousness as a regulatory field /

    Get PDF

    EXPLORING THE ABILITY TO EMPLOY VIRTUAL 3D ENTITIES OUTDOORS AT RANGES BEYOND 20 METERS

    Get PDF
    The Army is procuring the Integrated Visual Augmentation System (IVAS) system to enable enhanced night vision, planning, and training capability. One known limitation of the IVAS system is the limited ability to portray virtual entities at far ranges in the outdoors due to light wash out, accurate positioning, and dynamic occlusion. The primary goal of this research was to evaluate fixed three-dimensional (3D) visualizations to support outdoor training for fire teams through squads, requiring target visualizations for 3D non-player characters or vehicles at ranges up to 300 m. Tools employed to achieve outdoor visualizations included GPS locational data with virtual entity placement, and sensors to adjust device light levels. This study was conducted with 20 military test subjects in three scenarios at the Naval Postgraduate School using a HoloLens II. Outdoor location considerations included shadows, background clutter, cars blocking the field of view, and the sun’s positioning. Users provided feedback on identifying the type of object, and the difficulty in finding the object. The results indicate GPS only aided in identification for objects up to 100 m. Animation had a statistically insignificant effect on identification of objects. Employment of software to adjust the light levels of the virtual objects aided in identification of objects at 200 m. This research develops a clearer understanding of requirements to enable the employment of mixed reality in outdoor training.Lieutenant Colonel, United States ArmyApproved for public release. Distribution is unlimited
    • …
    corecore